
Pressure effects on structures formed by entropically driven self-assembly:
Illustration for denaturation of proteins

Takashi Yoshidome,1 Yuichi Harano,2 and Masahiro Kinoshita1,*
1Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan

2Global Edge Institute, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
�Received 16 July 2008; published 20 January 2009�

We propose a general framework of pressure effects on the structures formed by the self-assembly of solute
molecules immersed in solvent. The integral equation theory combined with the morphometric approach is
employed for a hard-body model system. Our picture is that protein folding and ordered association of proteins
are driven by the solvent entropy: At low pressures, the structures almost minimizing the excluded volume
�EV� generated for solvent particles are stabilized. Such structures appear to be even more stabilized at high
pressures. However, it is experimentally known that the native structure of a protein is unfolded, and ordered
aggregates such as amyloid fibrils and actin filaments are dissociated by applying high pressures. This initially
puzzling result can also be elucidated in terms of the solvent entropy. A clue to the basic mechanism is in the
phenomenon that, when a large hard-sphere solute is immersed in small hard spheres forming the solvent, the
small hard spheres are enriched near the solute and this enrichment becomes greater as the pressure increases.
We argue that “attraction” is entropically provided between the solute surface and solvent particles, and the
attraction becomes higher with rising pressure. Due to this effect, at high pressures, the structures possessing
the largest possible solvent-accessible surface area together with sufficiently small EV become more stable in
terms of the solvent entropy. To illustrate this concept, we perform an analysis of pressure denaturation of three
different proteins. It is shown that only the structures that have the characteristics described above exhibit
interesting behavior. They first become more destabilized relative to the native structure as the pressure
increases, but beyond a threshold pressure the relative instability begins to decrease and they eventually
become more stable than the native structure.
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I. INTRODUCTION

It has been shown in theoretical calculations that a variety
of self-assembling and ordering processes in biological sys-
tems, such as protein folding, molecular recognition �lock-
key interaction�, and amyloid-fibril formation, are driven by
the solvent entropy �1–9�. Experimental studies have also
shown that in protein folding �10�, receptor-ligand binding
�11�, amyloid-fibril formation �12�, association of viruses
�13�, and formation of actin filaments �14,15� the enthalpic
and entropic changes are both positive at ambient tempera-
ture and pressure, proving that these processes are entropi-
cally driven. When these self-assembling processes occur,
the excluded volume �EV� generated by the solute molecule
or molecules is greatly reduced. Here, the EV is defined as
the volume of the space that the centers of solvent particles
cannot enter �16�. The EV decrease provides a corresponding
increase in the total volume available to the translational
motion of solvent particles in the system, leading to a great
gain of solvent entropy. In entropically driven self-assembly
such as protein folding and aggregation, the structures almost
minimizing the EV for solvent particles are stabilized.

It has been observed in experiments that the denaturation
of the native structure �pressure denaturation� �17,18� and the
dissolution of amyloid fibrils �19�, virus assemblies �13�, and
actin filaments �20,21� occur at high pressures. Harano and
Kinoshita have recently made a statistical-mechanical analy-

sis of pressure denaturation of a protein using three-
dimensional integral equation theory �22,23�. The protein is
modeled as a set of fused hard spheres immersed in hard
spheres forming the solvent. It is demonstrated that the pres-
sure denaturation is also driven by the solvent entropy. At
high pressures the solvent entropy becomes higher when the
protein takes a specific unfolded structure. The unfolded
structure is moderately less compact than the native structure
�i.e., the EV is only moderately larger� and characterized by
a cleft and/or swelling and solvent penetration into the inte-
rior. These characteristics are in good accord with the experi-
mental observations �17,18�.

It is, however, difficult to give an interpretation of the
result by Harano and Kinoshita in terms of the solvent-
entropy effect because it appears that the native structure
with almost the smallest EV seems to become more stable as
the pressure increases. For example, within the framework of
the Asakura-Oosawa �AO� theory �24,25�, which is widely
used as a simple way of understanding the EV effect, the
entropic gain upon self-assembly is given by −kBNS�Vex /V
=−kB�S�Vex where kB is the Boltzmann constant, NS the
total number of solvent molecules in the system, V the sys-
tem volume, �Vex ��0� the decrease in the EV, and �S
=NS /V. Since �S becomes higher as the pressure increases,
the structures formed by self-assembly should further be sta-
bilized by applying high pressures. This statement clearly
conflicts with the theoretical result by Harano and Kinoshita
�22,23� as well as the experimental observations �17,18�.

In the present paper, we elucidate the microscopic mecha-
nism of pressure effects on the structures formed by the self-*kinoshit@iae.kyoto-u.ac.jp
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assembly driven by the solvent entropy, from a fairly general
viewpoint. The integral equation theory is combined with the
recently developed morphometric approach �6,26� and ap-
plied to a hard-body model system in which all the allowed
configurations share the same energy and the system behav-
ior is purely entropic in origin. We argue that the investiga-
tion of the solvation entropy �SE� of a large hard-sphere
solute inserted into a hard-sphere solvent and the solvent
density profile near the solute provide important clues to the
mechanism of the pressure effects. “Attraction” is entropi-
cally provided between the solute surface and solvent par-
ticles, and it becomes higher with rising pressure. At low
pressures, the structural stability can be argued in terms of
the EV. As the pressure increases, however, the requirement
that the solvent-accessible surface area �ASA� be the largest
becomes progressively more imperative due to the strong
attraction. �Here, the ASA is the area of the surface that is
accessible to centers of solvent particles �16�.� Upon the
pressure-induced structural transition, the ASA increase must
be as large as possible while the EV increase must be kept
sufficiently small. The structures satisfying these require-
ments are stabilized at high pressures.

As an illustration of the present picture, we perform an
analysis of pressure denaturation of three representative pro-
teins. Several structures are considered for each protein and
their relative stability is calculated. Most of the structures are
increasingly more destabilized than the native structure with
rising pressure. However, a certain class of structures exhib-
its different behavior. As the pressure increases, they first
become more destabilized relative to the native structure, but
beyond a threshold pressure the relative instability begins to
decrease rather rapidly and they eventually become more
stable than the native structure. They are characterized by
only a moderate increment of the EV and considerably larger
ASA, which is in good accord with the experimental results
known for pressure denaturation of proteins. We also discuss
the dissolution of amyloid fibrils caused at high pressures
and argue that it can be understood within the same theoret-
ical framework.

II. MODEL AND THEORY

A. Integral equation theory

Hard-sphere solutes of diameter dU are immersed in hard
spheres of diameter dS forming the solvent. All the solute
and solvent particles interact through the hard-sphere poten-
tial. As described above, the analysis of this simple, refer-
ence system using integral equation theory provides an im-
portant clue to the mechanism of pressure effects on the
structures formed by the entropically driven self-assembly.
The subscripts “S” and “U” represent “solvent” and “solute,”
respectively. The Ornstein-Zernike �OZ� equation for the
mixture can be written as

����r� = �
�

��� c����r − r��������r�� + c���r���dr�,

�1a�

����r� = h���r� − c���r�, �,� = S,U, �1b�

where h and c are the total and direct correlation functions,
respectively, dr� represents spatial integration, and � is the
number density. The closure equation is expressed by �27�

h���r� + 1 = exp�− u���r�/�kBT� + h���r� − c���r� + b���r�� ,

�2�

where u is the pair potential, kBT is the Boltzmann constant
times the absolute temperature, and b is the bridge function.

We assume that the solutes are immersed in solvent at
infinite dilution ��U=0�. The calculation process can then be
split into two steps �28–30�:

Step �i�. Solve Eqs. �1� and �2� for bulk solvent. Calculate
the correlation functions XSS �X=h ,c�.

Step �ii�. Solve Eqs. �1� and �2� for the solute-solvent
system using the correlation functions obtained in step �i� as
input data. Calculate the correlation functions XUS �X=h ,c�.

In the present analysis, the hypernetted-chain �HNC� ap-
proximation is employed �b=0� because it enables us to cal-
culate the hydration free energy through the simple formula
derived by Morita and Hiroike �31,32�:

�/�kBT� = 4	�S� �1

2
	hUS�r�
2 −

1

2
hUS�r�cUS�r�

− cUS�r��r2dr . �3�

The Percus-Yevick �PY� closure gives a pathological density
profile of solvent particles which becomes negative near a
large solute. The PY closure gives good results only for a
hard-sphere mixture with very low size asymmetry. In the
present hard-sphere model, � is equal to −TS where S is the
solvation entropy �SE�. The solute-solvent pair correlation
function gUS�r�, which represents the reduced density profile
of the solvent near the solute, is obtained from

gUS�r� = hUS�r� + 1. �4�

As explained in Sec. III B, we discuss two components of
the SE: the SE at the solute-solvent pair correlation level and
that at the solute-solvent-solvent triplet and higher-order cor-
relation levels. Here we describe the procedure for decom-
posing the SE into the two components. The SE can be ex-
pressed as an expansion in terms of multiparticle correlation
functions for a solute immersed in solvent �33�. It comprises
components at the solute-solvent pair, solute-solvent-solvent
triplet, and higher-order correlation levels. The components
representing the solvent-solvent pair, solvent-solvent-solvent
triplet, and higher-order correlations perturbed by the solute
insertion are also included. The component of the SE at the
solute-solvent pair correlation level Spair is given by �33–35�
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Spair/kB = 4	�S��
0




�gUS�r� − 1�r2dr

− �
0




gUS�r�ln�gUS�r��r2dr� . �5�

The first term in the right-hand of Eq. �5� can further be
decomposed into the following two terms:

4	�S�
0




�gUS�r� − 1�r2dr = 4	�S�
dUS




�gUS�r� − 1�r2dr

−
4	�SdUS

3

3
, �6�

where dUS= �dU+dS� /2 and dU is the solute diameter. The
second term in the right-hand side of Eq. �6� represents the
contribution from the EV:

SV
pair/kB = −

4	�SdUS
3

3
. �7�

We define SA
pair as Spair−SV

pair:

SA
pair/kB = 4	�S��

dUS




�gUS�r� − 1�r2dr

− �
dUS




gUS�r�ln�gUS�r��r2dr� . �8�

Here the lower limit of the integral of the second term is
replaced by dUS because gUS�r�=0 when r�dUS. SA

pair repre-
sents the solvent-entropy change arising from formation of
the solute-induced layer of solvent particles. In the SE cal-
culated by the integral equation theory, the solute-solvent-
solvent triplet and higher-order correlation terms are also in-
cluded through the OZ equation, which is formally exact.
Therefore,

Smulti/kB = S/kB − Spair/kB �9�

represents the SE at the solute-solvent-solvent triplet and
higher-order correlation levels. We discuss the physical
meaning of Smulti /kB in the Appendix. It should be noted that
the solute-solvent-solvent triplet and higher-order correla-
tions are taken into account through the convolution integrals
of the solute-solvent and solvent-solvent total correlation
functions. For example, the triplet correlation is not ex-
pressed in terms of g�r1 ,r2 ,r3� but calculated from the con-
volution integral of the total correlation functions.

For the numerical solution of Eqs. �1� and �2�, a suffi-
ciently long range rL is divided into N grid points �ri= i�r,
i=0,1 , . . . ,N−1; �r=rL /N� and all of the pair potentials and
correlation functions are represented by their values on these
points. The basic equations are then rearranged in discrete
forms and the large set of nonlinear simultaneous equations
is solved using the robust, highly efficient algorithm devel-
oped by Kinoshita and co-workers �28–30�. The grid width
and the number of grid points are set at �r=0.01dS and N
=8192, respectively.

B. Models of protein and solvent

The solvation properties of a protein can be analyzed us-
ing those of a spherical solute through the morphometric
approach explained in the next section. To focus our analysis
on the entropic effect, the solvent particles are modeled as
hard spheres with diameter dS=0.28 nm, which is the size of
water molecules, and a protein is modeled as a set of fused
hard spheres. The polyatomic structure, which is crucially
important, is accounted for on the atomic level. The diameter
of each atom in the protein is set at the � value of the
Lennard-Jones potential parameters of AMBER99. The pro-
teins we examine here are protein G �Protein Data Bank
�PDB� code 2GB1�, 434 Cro protein �2cro�, and the
C-terminal domain of ribosomal protein �1ctf�.

For each protein, we consider the native structure and
unfolded structures. The latter consist of a random-coil state
and two rather compact structures referred to as “nonnative
1” and “nonnative 2,” respectively. The native structure is
taken from the PDB for protein G and from the four-state
reduced decoy set �36� for 2cro and 1ctf. We generate 32
random coils for protein G and ten random coils for 2cro and
1ctf. The method of generating the random coils is described
in our earlier publication �37�. Nonnative 1 and nonnative 2
are chosen from those treated in our recent studies �38� for
protein G. �The nonnative 1 structure and nonnative 2 struc-
ture correspond to the compact structure and the swelling
structure in �38�, respectively. The latter structure is the
pressure-denatured structure �22,23,38�.� We calculate the SE
for all the structures of 2cro and 1ctf in the four-state re-
duced decoy set at low and high pressures. As shown in Sec.
III D, it is found that several structures �class 2� become
more stable than the native structure at high pressures while
the others �class 1� exhibit increasing relative instability.
Nonnative 2 and nonnative 1 are representative structures
chosen from class 2 and class 1, respectively. All of the
structures are slightly modified to eliminate the unrealistic
overlaps of the protein atoms using the standard energy-
minimization technique �8�.

C. Morphometric approach to solvation entropy
and its components

In the morphometric approach �6,26�, any of the solvation
thermodynamic quantities is expressed using only four geo-
metric measures of a solute with a fixed structure and corre-
sponding coefficients �39�. The resultant morphometric form
for the solvation thermodynamic quantity Z is given by

Z = C1Vex + C2A + C3X + C4Y . �10�

Here, Vex is the EV, A is the ASA, and X and Y are the
integrated mean and Gaussian curvatures of the accessible
surface, respectively, and they form the four geometric mea-
sures.

The idea of the morphometric form expressed by Eq. �10�
is that it separates the geometric properties of the solute mol-
ecule and the four coefficients. This separation allows us to
determine the four coefficients in simple geometries. They
are determined from calculations of Z for the reference sys-
tem, spherical solutes with various diameters. The morpho-
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metric form applied to spherical solutes reduces to

Z = C1�4	

3
dUS

3 � + C2�4	dUS
2 � + 4	C3dUS + 4	C4.

�11�

The four coefficients are determined using least squares fit-
ting to Eq. �11�. As Z we consider the solvation entropy
−S /kB, the SE at the solute-solvent pair correlation level,
−SA

pair /kB, and the SE at the solute-solvent-solvent triplet and
higher-order correlation levels, −SA

multi /kB. We discuss these
quantities by multiplying by −1 since the SE contributes to
the solvation free energy as −TS. It is physically insightful to
examine the four coefficients for these quantities. Hereafter,
the coefficients in the morphometric form for −SA

pair /kB and
for −Smulti /kB are denoted by the superscripts “pair” and
“multi,” respectively, and those for −S /kB are written with-
out superscripts. We note that C1

pair=�S because the EV-
dependent term is separated.

Once the four coefficients are determined, Z of a protein
with any structure can be obtained by calculating only the
four geometric measures. We calculate the four geometric
measures by means of Connolly’s algorithm �42,43�. Contri-
butions to X and Y from the lines of intersecting spheres and
those to Y from the points where three lines meet are also
included in the calculation �6�. The high accuracy of the
morphometric approach to the SE of a protein has been dem-
onstrated for the hard-sphere solvent �6�. The deviation of
the SE by the morphometric approach from that obtained by
the three-dimensional �3D� integral equation theory �1,44,45�
is less than 
0.7% �6�. We have also confirmed that
−SA

pair /kB calculated by the morphometric approach is in ac-
cordance with that from the 3D integral equation theory
�1,44,45�. For example, −SA

pair /kB of the native structure of
protein G at �SdS

3 =0.7 is 132 from the morphometric ap-
proach and 148 from the 3D integral equation theory.

III. RESULTS AND DISCUSSION

A. Density profile of solvent near a hard-sphere solute

We first discuss the behavior of the reference system. Fig-
ure 1 shows the reduced density profiles of the solvent near a
hard-sphere solute of diameter 5dS for several solvent densi-
ties in the bulk. The solvent density is a measure of the
system pressure. The most striking feature is that a layer
within which solvent particles are enriched is formed near
the solute, despite the fact that there are no direct attractive
interactions between the solute and solvent particles, and the
enrichment becomes greater as the pressure increases. Thus,
some of the solvent particles in the system are in contact
with the solute surface. The contact is important for inter-
preting the coefficient in morphometric form for solvation
entropy in Sec. III B.

B. Pressure effects on the first and second coefficients
in morphometric form for solvation entropy

and its components

Figure 2�a� shows the density dependence �corresponding
to the pressure dependence� of the first and second coeffi-

cients C1 and C2 in the morphometric form applied to the SE
−S /kB. �We do not discuss C3 and C4 here because in Eq. �9�
C3X+C4Y is much smaller than C1Vex+C2A.� It is found that
C1�0 and C2�0 at any density and that �C1� and �C2� be-
come remarkably larger as the density is raised. C1 and �C2�
increase remarkably with rising pressure, but the increase in
the latter is larger: �C2� is much smaller than C1 at low pres-
sures, but they are comparable in magnitude at high pres-
sures.

The positive value of C1 arises from the solvent-entropy
loss caused by the solute insertion. The negative value of C2
can be interpreted as follows. We first note that the presence

0 1 2
0

2

4

6

8

(r−dUS)/dS

gUS

0.2
0.4
0.6
0.8

FIG. 1. Reduced density profiles of solvent near a large hard-
sphere solute at four different bulk solvent densities, �SdS

3 =0.2, 0.4,
0.6, and 0.8.
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FIG. 2. �a� C1 �Å−3�, C2 �Å−2�, C2 /C1 �Å�, �b� C1 �Å−3�, C1
pair

�Å−3�, C1
multi �Å−3�, �c� C2 �Å−2�, C2

pair �Å−2�, and C2
multi �Å−2� plotted

against solvent density corresponding to the pressure P.
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of a solvent molecule generates an EV for the other solvent
molecules in the system �22,23�. Due to this solvent crowd-
ing, some of the solvent particles are driven to contact the
solute surface �note that the contact is observed in Fig. 1�.
The contact brings the overlap of the EVs generated by the
solute and the solvent particles in contact with the solute. As
a consequence, the total volume available to the translational
motion of the other solvent particles �i.e., the solvent par-
ticles well outside the enriched layer in the vicinity of the
solute� increases, leading to an entropic gain. The solvent-
density profile near the solute is determined by the balance
of this entropic gain and the entropic loss for solvent par-
ticles in contact with the solute surface. The solvent crowd-
ing becomes more serious as the pressure increases, and the
entropic attraction between the solute surface and solvent
particles becomes stronger and the solvent enrichment near
the solute becomes greater.

To show the validity of the picture described in the last
paragraph quantitatively, we decompose S into two parts:
Spair and Smulti. The contribution from the solvent particles in
contact with the solute surface is included mostly in Spair

because the contact is represented by gUS�r� �see the Appen-
dix�. The contact leads to reduction in the crowding of the
particles sufficiently far from the solute, and this effect is
attributed to the solute-solvent-solvent triplet and higher-
order correlations. Thus, the entropic gain is expected to be
induced by Smulti. The coefficients C1 and C2 for Spair and
Smulti are shown in Figs. 2�b� and 2�c�. C1

pair and C1
multi are

both positive. On the other hand, C2
multi is negative while C2

pair

is positive as shown in Fig. 2�c�. The positive value of C2
pair

is indicative that the formation of the denser layer of solvent
particles near the solute surface gives rise to an entropic loss.
It is obvious that C2�0 originates from C2

multi�0. Thus, we
can conclude quantitatively that the entropic gain can be as-
cribed to the reduction in the crowding of the particles suf-
ficiently far from the solute.

C. General framework of pressure effects on structures
formed by self-assembly

We consider the solvation entropies of the two structures
formed by the self-assembly of a solute molecule or solute
molecules at low and high pressures, respectively. Since in
Eq. �10� C3X+C4Y is much smaller than C1Vex+C2A, the
difference between the two quantities is approximately given
by

− Shigh/kB − 	− Slow/kB
 � C1�Vex
high − Vex

low� + C2�Ahigh − Alow� ,

�12�

where the superscripts “high” and “low” denote the struc-
tures stabilized at high and low pressures, respectively. For
the pressure denaturation of a protein, for example, “high”
and “low” denote the unfolded structure and the native struc-
ture, respectively. At high pressures, the structure formed by
self-assembly is usually destroyed: The protein is unfolded
and the amyloid fibrils are dissolved. The difference
−Shigh /kB− 	−Slow /kB
 represents the negative of the solvent-
entropy change upon destruction. Vex

high−Vex
low and Ahigh

−Alow are, respectively, the changes in the EV and the ASA

upon the destruction, and they are both positive.
For the pressure-induced destruction to occur, C2�Ahigh

−Alow� �negative� must surpass C1�Vex
high−Vex

low� �positive� at
sufficiently high pressures. In other words, only the structure
making the former larger can be stabilized at elevated pres-
sures. The pressure dependence of the structural stability is
determined by a subtle balance between these two terms. At
low pressures, the structural stability is determined primarily
by the EV term �i.e., C1�Vex

high−Vex
low�� because �C2� /C1�1.

As the pressure becomes higher, both C1 and �C2� increase
but the increase in the latter is considerably larger, with the
result that the ASA term �i.e., C2�Aex

high−Aex
low�� becomes in-

creasingly more important in determining the structural sta-
bility. The transition to the specific structure for which the
ASA term prevails over the EV term is induced by applying
high pressures. Upon the transition, the ASA is expected to
exhibit a remarkable increase while the EV increase is kept
sufficiently small.

D. Pressure denaturation of proteins

We consider −�S /kB
�−S /kB�unfolded− 	�−S /kB�native

where the superscripts “native” and “unfolded” represent the
values for the native structure and for an unfolded structure,
respectively. −�S /kB represents the negative of the solvent-
entropy change upon the transition from the native structure
to the unfolded one. �It should be emphasized that C3X
+C4Y is fully incorporated in S /kB we calculate.� Figures
3–5 show −�S /kB upon the structural transition to the
random-coil state, nonnative 1, or nonnative 2 for protein G,
1ctf, and 2cro, respectively. The SE of the random-coil state
is taken to be the average value calculated for the set of
random coils generated for each protein. As the density cor-
responding to the pressure increases, all the unfolded struc-
tures become more destabilized than the native structure in
the low-pressure region. This is because C1 is much larger
than �C2�, and in the right-hand side of Eq. �12� the first term
dominates, with the result that any structure with larger EV is
more destabilized. With a further increase in the pressure,
�C2� grows more rapidly than C1, making these two coeffi-
cients comparable in magnitude in the high-pressure region.
Still, for the random-coil state and nonnative 1 the first term
is larger than the second term in the right-hand side of Eq.
�12� and they continue to increase the relative instability. As
a matter of fact, we have tested many more structures than
those described in the present paper, but most of them exhibit
qualitatively the same behavior. However, several special
structures like nonnative 2 display a completely different fea-
ture. As the pressure increases further, their relative instabil-
ity first becomes larger, but beyond a threshold pressure it
begins to decrease rather rapidly and they eventually become
more stable than the native structure. We have verified that
the qualitative aspects of the conclusion are not altered at all
when the three-dimensional integral equation theory is em-
ployed.

The decomposition into C1�Vex, C2�A, and C3�X
+C4�Y in the case of Fig. 3�c� is shown in Fig. 6. The term
C3�X+C4�Y is much smaller than the other two terms.
Thus, the contribution from the curvature term can be ne-
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the unfolded structure, respectively.
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glected in discussing −�S /kB. The density dependence of
−�S /kB is determined primarily by the EV and ASA terms.
In addition, since C3�X+C4�Y is positive, pressure denatur-
ation is induced only by the ASA term. We have reached the
same conclusion for the other two proteins as well.

Tables I–III give the EV and ASA of the structures con-
sidered for protein G, 2cro, and 1ctf, respectively. The values
for the random-coil state are those averaged over the 32 or
ten random coils generated. The EV follows the order native
structure�nonnative 2�nonnative 1� random-coil state,
and the ASA the order native structure�nonnative 1
�nonnative 2� random-coil state. Thus, nonnative 2 has a
smaller EV and larger ASA. Vex

unfold−Vex
native and Aunfold

−Anative are small enough and large enough, respectively, to
make �C2�Aunfold−Anative�� larger than �C1�Vex

unfold−Vex
native�� at

sufficiently high pressures. For the random-coil state,
Aunfold−Anative is quite large but Vex

unfold−Vex
native is too large to

invert the relative stability. For structures like nonnative 1,
on the other hand, Vex

unfold−Vex
native is fairly small, but Aunfold

−Anative is not large enough to invert the relative stability.
The inversion of the relative stability occurs only for struc-
tures whose ASA is considerably larger and whose EV is
only moderately larger than in the native structure. These
structures can be reached by solvent penetration into the pro-
tein interior, causing swelling.

From the standpoint of the morphometric form, pressure
denaturation is induced by the negative value of C2

multi, which

arises from the protein-solvent-solvent triplet and higher-
order correlations. If we considered the SE at the pair corre-
lation level alone, the native structure would be increasingly
more stabilized with rising pressure even relative to nonna-
tive 2 because of the positive value of C2

pair, and thus the
pressure denaturation could never be elucidated. When sol-
vent particles penetrate into the protein interior or contact the
protein surface, the penetration or the contact itself causes an
entropic loss. The use of the AO theory, which is based only
on C1

pair, would also lead to such a failure.
Here we comment on the previous studies �46� dealing

with pressure denaturation of proteins which are concen-
trated on the partial molar volume �PMV� defined by

VPMV = � ��

�P
�

T
, �13�

where P is the pressure. In those studies the PMV is calcu-
lated at low pressures, and structures having smaller PMV
than the native structure are identified as denatured ones sta-
bilized at high pressures. However, our results indicate that it
is not justified to consider the PMV at low pressures. We first
note that �13� can be expressed as

VPMV = � ��

��
�

T
� ��

�P
�

T
. �14�

Since ��� /�P�T is positive, the sign of �VPMV can be dis-
cussed by looking at ���� /���T. From Figs. 3–5, �VPMV is
positive even for nonnative 2 at low pressures. As the pres-
sure increases �VPMV decreases and eventually becomes
negative only at sufficiently high pressures. Pressure dena-
turation should be analyzed by calculating the PMV in the
high-pressure region, or, preferably, the solvation free energy
or entropy as a function of the pressure.

TABLE II. Excluded volume and solvent-accessible surface area
for several structures of 1ctf. Those of the random-coil state are the
average of ten structures.

Excluded
volume �Å3�

Solvent-accessible
surface area �Å2�

Native 13333.4 4045.62

Random coil 16712.1 7088.28

Nonnative 1 13618.2 4059.55

Nonnative 2 13403.4 4148.24

TABLE III. Excluded volume and solvent-accessible surface
area for several structures of 2cro. Those of the random coil struc-
ture are the average of ten structures.

Excluded
volume �Å3�

Solvent-accessible
surface area �Å2�

Native 14794.1 4389.05

Random coil 17536.9 7190.47

Nonnative 1 15101.7 4399.91

Nonnative 2 14950.0 4657.15
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FIG. 6. Decomposition of −�S for nonnative-2 structure of pro-
tein G into C1�Vex, C2�A, and C3�X+C4�Y at each density.

TABLE I. Excluded volume and solvent-accessible surface area
for several structures of protein G. Those of the random-coil state
are the average of 32 structures.

Excluded
volume �Å3�

Solvent-accessible
surface area �Å2�

Native 11600.3 3670.90

Random coil 14002.9 5947.13

Nonnative 1 12326.0 3777.31

Nonnative 2 11926.9 4210.81
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E. Comment on the formation-dissociation process
of amyloid fibrils

It is experimentally known that the amyloid fibrils are
dissociated into monomers when a high pressure is applied to
the system �19�. Equation �12� should also be applicable to
the formation-dissociation process. “High” and “low” denote
monomers and fibrils, respectively. Vex

high−Vex
low and Ahigh

−Alow are both positive. According to the experimental re-
sults, there are lots of vacant spaces within the fibrils, which
water molecules cannot enter �47�. �We emphasize that, even
with such small vacant spaces, overlaps of the excluded vol-
umes generated by protein subunits certainly occur, and the
EV of the fibrils is smaller than that of the monomers.� Such
a feature is in marked contrast to the native structure of a
protein in which the backbone and side chains are tightly
packed with little space in its interior. Because of the small
vacancies, Vex

low is significantly large while Alow is fairly
small. Therefore, upon the dissolution of the amyloid fibrils,
Vex

high−Vex
low can be kept sufficiently small even though Ahigh

−Alow becomes quite large. The dissolution to monomers
whose structures have features like those of nonnative 2 can
be the best solution. The monomers cannot be random coils
because of the unacceptably large EV increase despite the
largest ASA increase. The dissolution of actin filaments with
lots of small vacant spaces �20� can be understood in a simi-
lar manner. Thus, the folding-unfolding transition of a pro-
tein and the formation-dissociation process of amyloid fibrils
can be discussed within the same framework, pending theo-
retical verification in future studies for the latter.

IV. CONCLUSIONS

We have reconsidered a large hard-sphere solute inserted
into small hard spheres forming the solvent using the integral
equation theory combined with the morphometric approach.
The solvent-density profile near the solute and the solvation
entropy are calculated for a wide range of bulk solvent den-
sities corresponding to the system pressure. The SE is de-
composed into the solute-solvent pair correlation component
and the solute-solvent-solvent triplet and higher-order corre-
lation component. Each component is further decomposed
into terms that are dependent on the excluded volume gen-
erated by the solute, solvent-accessible surface area, and cur-
vature of the accessible surface, respectively.

We have suggested that the attraction between the solute
surface and solvent particles is the key point to understand
the present result; namely, solvent particles are entropically
enriched in the vicinity of the solute. The attraction becomes
higher with rising pressure. Although the formation of the
enriched layer itself causes an entropic loss, the solvent mol-
ecules far outside the solute surface benefit from an even
larger entropic gain by the overlap of the EVs generated by
the solute and the solvent molecules near the solute surface.
Consequently, the solvent entropy of the whole system be-
comes higher. The attraction originates from the solute-
solvent-solvent triplet and higher-order correlations. These
results are applied to a complex solute whose structure is
changeable using the morphometric approach.

We have then achieved a general framework of pressure
effects on the structures formed by the self-assembly of sol-
ute molecules driven by solvent entropy. It is experimentally
known that a protein is unfolded and the amyloid fibrils are
dissociated by applying high pressures. We consider the two
different structures stabilized at low and high pressures, re-
spectively. For protein folding and unfolding they are the
native structure and an unfolded state, and for amyloid-fibril
formation and dissociation they are the fibrils and a set of
monomers, respectively. It is argued that the differences be-
tween the structures in terms of the EV and ASA play essen-
tial roles as indicated in Eq. �12�. The structural stability is
determined by a subtle balance between the first �positive�
and second �negative� terms in the right-hand side of Eq.
�12�. At low pressures a structure almost minimizing its EV
is stabilized, whereas at high pressures a structure with the
largest possible ASA together with the EV kept sufficiently
small is more favored.

By an analysis of pressure denaturation to illustrate our
framework, only a class of special structures is shown to
become more stabilized relative to the native structure at
sufficiently high pressures. Those structures are character-
ized by only moderately larger EV and much larger ASA,
which is attained by the solvent penetration into the protein
interior. The protein-solvent-solvent triplet and higher-order
correlations are critical in pressure denaturation. If we con-
sider the protein-solvent pair correlation alone, it is impos-
sible to give an interpretation of pressure denaturation. We
have also described how amyloid fibrils are dissociated at
high pressures on the basis of the framework, pending theo-
retical verification in future studies.

In our interpretation, the increase in the free volume oc-
curs for the solvent particles beyond the denser layer formed
in the vicinity of the surface. Of course, the solvent particles
in the bulk �i.e., those infinitely far from the surface� cannot
be influenced and their free volumes remain unchanged.
However, the influence reaches a length scale which is much
larger than one might expect �i.e., up to positions fairly far
from the surface�. This can be understood from the follow-
ing. The solvent particles that are farther from the surface are
less influenced, but the number of such solvent particles be-
comes progressively larger as the distance from the surface
increases. In the case of pressure denaturation of a protein,
the solvent particles penetrate the protein interior. The gain
of larger free volumes should occur for the solvent particles
outside the protein and sufficiently far �not infinitely far�
from the protein surface.
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APPENDIX: SOLUTE-SOLVENT-SOLVENT TRIPLET
AND HIGHER-ORDER CORRELATIONS

We clarify the physical meaning of the solvation entropy
at the solute-solvent-solvent triplet and higher-order correla-
tion levels. From Eq. �3�, we obtain

− S/kB = 4	�S�
0


 �1

2
�hUS�r��2

−
1

2
hUS�r�cUS�r� − cUS�r��r2dr

= 4	�S�
0

dUS �1

2
−

1

2
cUS�r��r2dr

+ 4	�S�
dUS


 �1

2
�hUS�r��2

−
1

2
hUS�r�cUS�r� − cUS�r��r2dr

=
�SVex

2
− 4	�S�

0

dUS �1

2
cUS�r��r2dr

+ 4	�S�
dUS


 �1

2
�hUS�r��2

−
1

2
hUS�r�cUS�r� − cUS�r��r2dr . �A1�

The relation, hUS�r�=−1 for r�dUS, has been used. The ex-
cluded volume Vex is 4	dUS

3 /3. Using Eq. �A1�, we can ex-
press Smulti as

Smulti/kB = S/kB − Spair/kB

= 4	�S�
0

dUS �1

2
cUS�r��r2dr

− 4	�S�
dUS


 �1

2
�hUS�r��2

−
1

2
hUS�r�cUS�r� − cUS�r��r2dr

− 4	�S��
dUS




�gUS�r� − 1�r2dr

+ �
dUS




gUS�r�ln�gUS�r��r2dr� +
�SVex

2
. �A2�

Since gUS�r�=exp�hUS�r�−cUS�r�� for r�dUS in the HNC
equation �2� �b��=0�, we can rearrange Eq. �A2� as follows:

Smulti/kB = 2	�S�
0

dUS

cUS�r�r2dr

+ 2	�S�
dUS




�gUS�r� − 1�ln�gUS�r��r2dr +
�SVex

2
.

�A3�

Thus, Smulti has an additional term �the first term in the right-

hand side of Eq. �A3�� as well as the terms described by
gUS�r� and Vex. Note that the additional term is not included
in Spair. We show hereafter that the solute-solvent-solvent
triplet and higher-order correlation levels comes from cUS�r�.

We first note that the Ornstein-Zernike relation is exact
though the HNC closure is approximate �27,48�. From the
OZ equation �1a�, cUS�r� is expressed as

cUS�r� =
1

2	2�
0


 HUS�k�
1 + �SHSS�k�

sin�kr�
kr

k2dk , �A4�

where H�� is the Fourier transform of h���r�, which is de-
fined by

H�� = 4	�
0




h���r�
sin�kr�

kr
r2dr . �A5�

In the right-hand side of Eq. �A4� we use the following ex-
pression:

HUS�k�
1 + �SHSS�k�

= HUS�k� − HUS�k��SHSS�k� + HUS�k�

���SHSS�k��2 − HUS�k���SHSS�k��3 + ¯ .

�A6�

Here HUS�k�HSS�k� in the right-hand side of Eq. �A6� is the
Fourier transform of the convolution integral of hUS�r� and
hSS�r�, and the second term represents the solute-solvent-
solvent triplet correlation. Likewise, the third and succeeding
terms represent the higher-order correlations. Thus, we can
conclude that the first term in the right-hand side of of Eq.
�A6� contains the effect of the solute-solvent-solvent triplet
and higher-order correlation levels through the use of the OZ
relation. Smulti is not determined only by the effect gUS near
the solute surface.

We further decompose Eq. �A6� into the following two
terms:

HUS�k�
1 + �SHSS�k�

= HUS�k� + �US
multi�k� , �A7�

and define cUS
multi�r� as

cUS
multi�r� 


1

2	2�
0




�US
multi�k�

sin�kr�
kr

k2dk . �A8�

From the decomposition �A7�, cUS�r� is represented as

cUS�r� = hUS�r� + cUS
multi�r� . �A9�

Using Eq. �A9� and hUS�r�=−1 at r�dUS, Smulti becomes

Smulti = 2	�S�
0

dUS

�hUS�r� + cUS
multi�r��r2dr

+ 2	�S�
dUS




�gUS�r� − 1� ln�gUS�r��r2dr +
�SVex

2

= 2	�S�
0

dUS

cUS
multi�r�r2dr

PRESSURE EFFECTS ON STRUCTURES FORMED BY … PHYSICAL REVIEW E 79, 011912 �2009�

011912-9



+ 2	�S�
dUS




�gUS�r� − 1�ln�gUS�r��r2dr . �A10�

Since gUS�r� does not significantly deviate from 1 for r
�dUS, both gUS�r�−1 and ln�gUS�r�� are very small. In the
right-hand side of Eq. �A10�, the second term is much

smaller than the first one and considerably smaller than
SA

pair /kB. The effect of the solute-solvent-solvent triplet and
higher-order correlations forms a major part of Smulti. Thus,
the solvation entropy has been decomposed into the pair cor-
relation component and the triplet and higher-order correla-
tion component almost completely.
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